Bounds for the minimal solution of genus zero diophantine equations
نویسندگان
چکیده
منابع مشابه
On the Practical Solution of Genus Zero Diophantine Equations
Let f(X,Y ) be an absolutely irreducible polynomial with integer coefficients such that the curve C defined by the equation f(X,Y ) = 0 is of genus 0. We denote by Q an algebraic closure of the field of rational numbers Q and by Q(C) the function field of C. We suppose that there are at least three discrete valuation rings of Q(C) which dominate the local rings of C at the points at infinity. M...
متن کاملMINIMAL SOLUTION OF INCONSISTENT FUZZY MATRIX EQUATIONS
Fuzzy liner systems of equations, play a major role in several applications in various area such as engineering, physics and economics. In this paper, we investigate the existence of a minimal solution of inconsistent fuzzy matrix equation. Also some numerical examples are considered.
متن کاملStatistical Zero-Knowledge Proofs from Diophantine Equations
A family (St) of sets is p-bounded Diophantine if St has a representing p-bounded polynomial RS;t, s.t. x 2 St () (9y)[RS(x; y) = 0℄. We say that (St) is unbounded Diophantine if additionally, RS;t is a fixed t-independent polynomial. We show that p-bounded (resp., unbounded) Diophantine set has a polynomial-size (resp., constant-size) statistical zero-knowledge proof system that a committed tu...
متن کاملexistence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولSolving Genus Zero Diophantine Equations with at Most Two Infinite Valuations
Let f(X,Y ) be an absolutely irreducible polynomial with integer coefficients such that the curve defined by the equation f(X,Y ) = 0 is of genus 0. We denote by C the projective curve defined by F (X,Y, Z) = 0, where F (X,Y, Z) is the homogenization of f(X,Y ). Let Q be an algebraic closure of the field of rational numbers Q and Q(C) be the function field of C. If P is a point on C, we denote ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Arithmetica
سال: 1998
ISSN: 0065-1036,1730-6264
DOI: 10.4064/aa-86-1-51-90